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Introduction

Asymmetric synthesis of organofluorine compounds is
an important issue in pharmaceutical chemistry1 and
optoelectronic material science.2 In particular, asym-
metric catalysis of carbon-carbon bond forming reactions
is the most attractive method, because the carbon
skeleton of chiral organofluorine molecules can be con-
structed at the time of asymmetric induction.3 The
Friedel-Crafts (F-C) reaction is one of the most funda-
mental carbon-carbon bond forming reactions in organic
synthesis.4 However, its application to catalytic asym-
metric synthesis has been quite limited.5,6,7 Herein, we

report a practical synthetic route to chiral 1-aryl-2,2,2-
trifluoroethanol derivatives of synthetic importance8

through the F-C reaction with fluoral using chiral
binaphthol-derived titanium (BINOL-Ti) catalysts9 via
asymmetric activation.10 In combination with chiral
activators, the catalytic activity and enantioselectivity of
BINOL-Ti catalysts can be enhanced (Scheme 1).

Result and Discussion

In the F-C reaction, the catalytic activity and enan-
tioselectivity of BINOL-Ti catalysts11 were found to be
critically influenced by the substituents of BINOL de-
rivatives (Table 1). (1) (R)-6,6′-Br2-BINOL-Ti catalyst was
the most effective catalyst. This F-C reaction did not
proceed easily as compared with the carbonyl-ene
reaction3d,e or the Mukaiyama-aldol reaction3d with fluo-
ral. Therefore, the role of the electron-withdrawing group
at the 6,6′-position of BINOL was found to be very
important for increasing the Lewis acidity (runs 1-3).
Relatively high enantioselectivity was obtained even
when using 1 mol % of (R)-6,6′-Br2-BINOL-Ti catalyst
(run 4). (2) Polar solvent was more effective for producing
higher para regioselectivity (run 5). When toluene was
used as a solvent, the enantio-enriched adducts of fluoral
to toluene were also obtained, along with the expected
F-C product with anisole. (3) Interestingly, a lower
reaction temperature leads to a decrease in the enantio-
selectivity of para-isomer, presumably because of the
oligomeric nature of the BINOL-Ti catalysts at lower
temperature (run 6). (4) The steric bulkiness of the alkyl
ether portion of the aromatic substrates was essential
for producing higher para regioselectivity (run 7). Inter-
estingly, the bis-adduct with fluoral was not obtained
even when using a large excess of fluoral in the reaction
of diphenyl ether (run 8).

The sense of asymmetric induction was the same as
observed in BINOL-Ti-catalyzed asymmetric reactions
such as the carbonyl-ene reaction11,13 and the Mu-
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kaiyama-aldol reaction14 regardless of the preparative
procedure of the catalysts; (R)-BINOL-Ti catalyst pro-
duces an (R)-alcohol product.

This F-C reaction cannot proceed through a six-
membered transition state (A) involving a chiral Lewis
acid, which has been reported to preferentially produce
an ortho-F-C-product in the reaction of phenol5e,6b or
1-naphthol.6a In our case, however, the para-isomer is
the major product.

The catalyst efficiency and enantioselectivity of BINOL-
Ti complexes can be further increased through asym-
metric activation.10 Thus, the (R)-6,6′-Br2-BINOL-Ti-
(OPri)2, prepared from Ti(OPri)4 and (R)-6,6′-Br2-BINOL,
is activated by the addition of acidic activators such as
(R)-5-Cl-BIPOL and (R)-6,6′-Br2-BINOL (Table 2). In all
runs, chemical yields are obviously improved by the
addition of acidic activators, in sharp contrast to a similar
reaction catalyzed by Yb(OTf)3, in which the addition of

(R)-6,6′-Br2-BINOL obviously decreases the catalytic
activity.15 The highly acidic catalyst was prepared by the
coordination of the acidic 6,6′-Br2-BINOL with the (R)-
6,6′-Br2-BINOL-Ti(OPri)2, in particular.10a,b In combina-
tion with the matched chiral activator, the enantioselec-
tivity can be improved up to 90% ee as well as producing
a high chemical yield (runs 5, 6).

We have thus reported the first example of asymmetric
catalysis of the Friedel-Crafts reaction with fluoral.
Chiral 1-aryl-2,2,2-trifluoroethanol derivatives of syn-
thetic importance are obtained by the catalysis of chiral
binaphthol-derived titanium complexes through asym-
metric activation.

Experimental Section

General. Melting point is uncorrected. 1H NMR spectra were
recorded at 300 MHz;13C NMR spectra were recorded at 75 MHz.
Tetramethylsilane (δ ) 0 ppm) was used as an internal standard,
and CDCl3 was used as the solvent. Analytical thin-layer
chromatography (TLC) were performed on a glass plates pre-
coated with silica gel (Merck Kieselgel 60 F254, layer thickness
0.25 mm). Visualization was accomplished by UV light (254 nm)
and phosphomolybdic acid. Column chromatography was per-
formed on Silica Gel 60 (70-230 mesh) purchased from Kanto
Chemical Co., Inc. Molecular sieves (MS) 4A (activated powder)
was purchased from Aldrich Chemical Co., Inc. Dehydrated
dichloromethane and toluene were purchased from Kanto Chemi-
cal Co., Inc. Fluoral was generated by the addition of fluoral
hydrate to concentrated H2SO4 at 100 °C.

General Procedure for the Friedel-Crafts Reactions
with Fluoral Catalyzed by BINOL-Ti Complexes through
Asymmetric Activation. To a solution of Ti(OPri)4 (28.4 mg,
0.1 mmol) in dehydrated dichloromethane (1 mL) was added (R)-
6,6′-Br2-BINOL (44.4 mg, 0.1 mmol) at room temperature under
an argon atomosphere. After stirring for 1 h, the additive (0.1
mmol) in dehydrated dichloromethane (1 mL) was added to the
mixture. After stirring for additional 1 h, aromatic substrate (1
mmol) in dehydrated dichloromethane (1 mL) was added, and
then an excess amount of freshly dehydrated and distilled fluoral
was passed to the catalyst solution at 0 °C. The reaction mixture
was stirred for 12 h at the same temperature. Dichloromethane
(5 mL) and H2O (3 mL) were added to the mixture. Insoluble
material was filtered off through a pad of Celite, and the filtrate
was extracted three times with dichloromethane. The combined
organic layer was washed with brine, dried over MgSO4, and
evaporated under reduced pressure. Chromatographic separa-
tion by silica gel (dichloromethane:n-hexane ) 3:2) gave the
product.

p-2a: colorless oil. 1H NMR (CDCl3) δ 2.73 (d, J ) 4.5 Hz,
1H), 3.81 (s, 3H), 4.93 (dq, J ) 4.5, 6.6 Hz, 1H), 6.91 (d, J ) 9.0
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6,6′-Br2-BINOL (1 or 2 equiv) decreased the chemical yields (42% (para/
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Table 1. The F-C Reactions with Fluoral Catalyzed by (R)-BINOLs/Cl2Ti(OPri)2/MS 4Aa

run 1 chiral ligand cat. (mol%) solvent temp (°C) yield (%)c p-2:o-2c ee (%)d

1 a (R)-BINOL 30 CH2Cl2 0 82 4:1 73 (R)
2 a (R)-H8-BINOLb 5 CH2Cl2 0 11 4:1 22 (R)
3 a (R)-6,6′-Br2-BINOL 5 CH2Cl2 0 94 4:1 84 (R)
4 a (R)-6,6′-Br2-BINOL 1 CH2Cl2 0 99 4:1 72 (R)
5 a (R)-6,6′-Br2-BINOL 30 toluene 0 99 2:1 83 (R)
6 a (R)-6,6′-Br2-BINOL 5 CH2Cl2 -30 94 4:1 79 (R)
7 b (R)-6,6′-Br2-BINOL 15 CH2Cl2 0 85 8:1 83 (Re)
8 c (R)-6,6′-Br2-BINOL 10 CH2Cl2 0 90 3:1 54 (Re)

a BINOL-Ti catalysts were prepared as previously reported (ref 11). An excess of fluoral was used in all runs, because of the self-
polymerization. b (R)-Octahydrobinaphthol. c Isolated yield after silica gel column chromatography. d The enantiomeric excess of p-2.
Determined by chiral HPLC. p-2a: Daicel, CHIRALPAK OD-H, n-hexane:i-PrOH ) 98:2, 0.8 mL/min, 254 nm, tR ) 43 min (S), 49 min
(R). p-2b: Daicel, CHIRALPAK AS, n-hexane:i-PrOH ) 99:1, 0.8 mL/min, 254 nm, tR ) 40 min (S), 42 min (R). p-2c: Daicel, CHIRALPAK
OD-H, n-hexane:i-PrOH ) 98:2, 0.8 mL/min, 254 nm, tR ) 34 min (R), 44 min (S). The absolute configuration of p-2a was determined by
the comparison of optical rotation with the literature values (ref 12). e The absolute configurations of p-2b and p-2c were assumed to be
R from a similarity.

Table 2. The F-C Reactions with Fluoral Catalyzed by
BINOL-Ti Complex through Asymmetric Activationa

run 1
cat.

(mol%) additive
temp
(°C)

yield
(%)c p-2:o-2c

ee
(%)d

1 a 10 - 0 66 4:1 70 (R)
2 a 10 pentafluorophenol 0 94 3:1 68 (R)
3 a 10 (R)-BINOL 0 97 3:1 64 (R)
4 a 10 (R)-5-Cl-BIPOLb 0 88 4:1 78 (R)
5 a 10 (R)-6,6′-Br2-BINOL 0 89 4:1 90 (R)
6 b 10 (R)-6,6′-Br2-BINOL 0 90 8:1 90 (R)

a (R)-6,6′-Br2-BINOL-Ti(OPri)2 was activated by the additive in
a molar ratio of 1:1 in dichloromethane (2 mL) at room tempera-
ture under an argon atomosphere for 1 h. The F-C reaction was
carried out in situ by the addition of anisole (1 mmol) in
dichloromethane (1 ml) and then passing an excess amount of
fluoral. b 5,5′-Dichloro-4,4′,6,6′-tetramethyl-2,2′-biphenol. c Isolat-
ed yield after silica gel chromatography. d Refers to that of p-2.
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Hz, 2H), 7.38 (d, J ) 9.0 Hz, 2H). 13C NMR (CDCl3) δ 55.4, 72.5
(q, J ) 32 Hz), 114.1, 124.4 (q, J ) 282 Hz), 126.2, 128.9, 160.5.
IR (neat) 3440, 1170 cm-1. MS (EI) m/z 206 [M+], 137. [R]29

D
-23.0° (c 1.62, EtOH) (61% ee of R isomer). Chiral HPLC (Daicel,
CHIRALPAK OD-H, n-hexane:i-PrOH ) 98:2, 0.8 mL/min, 254
nm) tR ) 43 min (S), 49 min (R). Rf (Merck Kieselgel 60 F254/
dichloromethane:n-hexane ) 3:2) 0.24.

o-2a: colorless oil. 1H NMR (CDCl3) δ 3.66 (d, J ) 7.8 Hz,
1H), 3.88 (s, 3H), 5.27 (quin, J ) 7.8 Hz, 1H), 6.95 (d, J ) 7.8
Hz, 1H), 7.02 (t, J ) 7.8 Hz, 1H), 7.37 (t, J ) 7.8 Hz, 1H), 7.39
(d, J ) 7.8 Hz, 1H). 13C NMR (CDCl3) δ 55.8, 69.8 (q, J ) 33
Hz), 111.4, 121.1, 122.2, 124.7 (q, J ) 283 Hz), 129.3, 130.6,
157.6. IR (neat) 3450, 1174 cm-1. MS (EI) m/z 206 [M+], 137.
[R]31

D -11.8° (c 2.05, EtOH) (50% ee of R isomer). Chiral HPLC
(Daicel, CHIRALPAK OD-H, n-hexane:i-PrOH ) 98:2, 0.8 mL/
min, 254 nm) tR ) 20 min (R), 27 min (S). Rf (Merck Kieselgel
60 F254/dichloromethane:n-hexane ) 3:2) 0.33.

p-2b: colorless needles. mp 65 °C (n-hexane). 1H NMR (CDCl3)
δ 0.98 (t, J ) 7.5 Hz, 3H), 1.49 (sex., J ) 7.5 Hz, 2H), 1.77 (quin,
J ) 7.5 Hz, 2H), 2.43 (d, J ) 4.5 Hz, 1H), 3.97 (t, J ) 7.5 Hz,
2H), 4.96 (dq, J ) 4.5, 6.6 Hz, 1H), 6.92 (d, J ) 9.0 Hz, 2H),
7.38 (d, J ) 9.0 Hz, 2H). 13C NMR (CDCl3) δ 13.9, 19.3, 31.3,
67.9, 72.6 (q, J ) 32 Hz), 114.7, 124.4 (q, J ) 282 Hz), 126.0,
128.8, 160.2. IR (neat) 3400, 1174 cm-1. MS (EI) m/z 248 [M+],
179. [R]29

D -34.1° (c 1.08, EtOH) (100% ee of R isomer). Chiral
HPLC (Daicel, CHIRALPAK AS, n-hexane:i-PrOH ) 99:1, 0.8
mL/min, 254 nm) tR ) 40 min (S), 42 min (R). Rf (Merck Kieselgel
60 F254/dichloromethane:n-hexane ) 3:2) 0.27.

o-2b: colorless oil. 1H NMR (CDCl3) δ 0.99 (t, J ) 7.5 Hz, 3H),
1.50 (sex., J ) 7.5 Hz, 2H), 1.81 (m, 2H), 3.83 (d, J ) 7.5 Hz,
1H), 4.05 (m, 2H), 5.24 (quin, J ) 7.5 Hz, 1H), 6.94 (d, J ) 7.5
Hz, 1H), 6.99 (t, J ) 7.5 Hz, 1H), 7.35 (t, J ) 7.5 Hz, 1H), 7.36
(d, J ) 7.5 Hz, 1H). 13C NMR (CDCl3) δ 13.6, 19.1, 31.1, 68.3,
70.6 (q, J ) 33 Hz), 112.2, 121.1, 122.2, 125.0 (q, J ) 284 Hz),
129.8, 130.8, 157.5. IR (neat) 3440, 1172 cm-1. MS (EI) m/z 248

[M+]. [R]30
D -0.8° (c 0.51, EtOH) (6% ee of R isomer). Chiral

HPLC (Daicel, CHIRALPAK OD-H, n-hexane:i-PrOH ) 98:2, 0.8
mL/min, 254 nm) tR ) 26 min (S), 34 min (R). Rf (Merck Kieselgel
60 F254/dichloromethane:n-hexane ) 3:2) 0.48.

p-2c: colorless oil. 1H NMR (CDCl3) δ 2.53 (d, J ) 4.2 Hz,
1H), 5.01 (dq, J ) 4.2, 6.7 Hz, 1H), 7.02 (d, J ) 9.0 Hz, 2H),
7.04 (d, J ) 7.5 Hz, 2H), 7.15 (t, J ) 7.5 Hz, 1H), 7.37 (t, J ) 7.5
Hz, 2H), 7.44 (d, J ) 9.0 Hz, 2H). 13C NMR (CDCl3) δ 72.5 (q, J
) 32 Hz), 118.5, 119.5, 124.0, 124.3 (q, J ) 282 Hz), 128.5, 129.1,
130.0, 156.5, 158.7. IR (neat) 3440, 1170 cm-1. MS (EI) m/z 268
[M+], 199. [R]29

D -21.6° (c 0.90, EtOH) (77% ee of R isomer).
Chiral HPLC (Daicel, CHIRALPAK OD-H, n-hexane:i-PrOH )
98:2, 0.8 mL/min, 254 nm) tR ) 34 min (R), 44 min (S). Rf (Merck
Kieselgel 60 F254/dichloromethane: n-hexane ) 3:2) 0.27.

o-2c: colorless oil. 1H NMR (CDCl3) δ 3.16 (d, J ) 6.9 Hz, 1H),
5.48 (quin, J ) 6.9 Hz, 1H), 6.83 (d, J ) 8.3 Hz, 1H), 7.03 (d, J
) 8.3 Hz, 2H), 7.16 (t, J ) 8.3 Hz, 2H), 7.31 (t, J ) 8.3 Hz, 1H),
7.37 (t, J ) 8.4 Hz, 2H), 7.58 (d, J ) 8.3 Hz, 1H). 13C NMR
(CDCl3) δ 68.4 (q, J ) 33 Hz), 117.9, 119.6, 123.6, 124.3, 124.7,
124.7 (q, J ) 283 Hz), 129.4, 130.2, 130.8, 155.9, 156.4. IR (neat)
3440, 1176 cm-1. MS (EI) m/z 268 [M+]. [R]29

D -15.1° (c 1.59,
EtOH) (63% ee of R isomer). Chiral HPLC (Daicel, CHIRALPAK
OD-H, n-hexane:i-PrOH ) 99:1, 0.8 mL/min, 254 nm) tR ) 23
min (R), 28 min (S). Rf (Merck Kieselgel 60 F254/dichloromethane:
n-hexane ) 3:2) 0.36.
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